
Subject: railML 3.2: Additional information for travel paths in a macroscopic
netElement
Posted by Thomas Langkamm on Mon, 06 Dec 2021 09:27:36 GMT
View Forum Message <> Reply to Message

In railML 2.5 we introduced a new "relation" element to ocps (Adding turning resistances to the
<ocp>, https://trac.railml.org/ticket/413). We had some discussions in the IS SCTP group on how
to integrate this in railML 3 (which is structurally a bit different from 2.5 there), or if we need this at
all.

Here is my proposed solution.

The typical scenario would be that some software works on a mesoscopic or macroscopic version
of the network, without detailed knowledge of the microscopic network. We often need more
information than the connectivity (which is covered by netRelations) namely information about
changes of direction (tracking vehicle position&direction in a train formation) and possibly more
information that can be used for routing.

Before I propose a model, I would like to give some background information.

Change of direction (COD)
=========================
CODs are considered to be fundamental information in many contexts. This information comes in
2 flavors: (1) Orientation changes (do we reverse driving direction, and are front/back vehicles
exchanged?), and (2) the exact number of CODs. An orientation change occurs if we have an odd
number of CODs, while the orientation remains the same if that number is even. A few examples
where we need one of this information:

** Passenger information systems typically need to know about orientation changes, because the
order of the vehicles is reversed. ("1st class in sections A and B today.")
** A duty scheduling system, however, will need to know the precise number of CODs, as each
cabin change takes time or needs an additional driver -- we may have 2 alternatives for a train
movement, for example one that involves 1 COD and another involving 3 CODs.
** Vehicle dispatch or rostering often only need the same information -- for example the
locomotive must be in front of the passenger railcars. However, there are situations where the
number of CODs is important as well: Say we have railcars with driver cabins on both side and the
cabin on one side has a minor technical issue such that it can't be used to in front, but it can be
used as last railcar in a train for example. In this case we need to know if any CODs occur even if
the orientation remains (even number of CODs).

These software systems will often operate on a mesoscopic/macroscopic model, i.e. without a full
network model, so they can't calculate the CODs on their own. The travel path in a net element
may be a black box and hidden from these software systems. We need to provide more
information in the infrastructure.

How could we integrate CODs in a macroscopic railML 3.2 model?

Page 1 of 4 ---- Generated from Forum

https://www.railml.org/forum/index.php?t=usrinfo&id=209
https://www.railml.org/forum/index.php?t=rview&th=838&goto=2854#msg_2854
https://www.railml.org/forum/index.php?t=post&reply_to=2854
https://www.railml.org/forum/index.php

Even though we already have a "relation" between a pair of net elements in railML 3 (netRelation),
this element is not sufficient to store this information because we need the context of a 3rd net
element. Consider the following track plan for example. C is a station with a one siding track
where trains could be parked.

With a microscopic netElement structure as follows:

This could have a macroscopic netElement structure as follows:

(Obviously we could split C in 2 net elements, which might be a better design. However, let's stick
with one net element because the type of problems that we will see might arise in more complex
models where we don't have the luxury to split net elements.)
Note that all netRelations in the macroscopic model are navigable in both directions, and we can
navigate between C and all other net elements without changing orientation. This of course
changes if we consider triples of net elements:

* From A to B via C (A-C-B) we always have a COD. The route may or may not involve shunting,
depending on whether we use the switch on the left or the siding track to the right of C.
* For A-C-E we have a direct path (no change of direction or shunting. But we could also go via
the top platform and then use2 CODs to get to E.
* A-C-D is similar to A-C-E (even though the platforms are reversed for the direct and indirect
connection).
* For B-C-D we have 2 CODs and possibly shunting. Thus, the orientation of the train remains
identical but a driver would have to do 2 cabin changes.
* B-C-E has only a direct connection. (We could go via the top platform in C, but then we have a
circle in the path as we pass the bottom platform twice. IMO an internal path must not contain a
circle.)
* D-C-E has a change of orientation and either 1 COD or 3 CODs.

Assuming that the model allows no CODs within a net element (which IMO is a reasonable
assumption if we want to track CODs at all), we have a well defined information if a train changes
direction or not when moving from X to Z via Y that does not depend on the travel route within
these net elements. The _number_ of CODs (number of cabin changes) may depend on the travel
route within the net elements -- but we do know if that number is even or odd regardless of the
travel route.

Therefore I would suggest to use an extension of what we have in railML 2.5 where we use
"changeDrivingDirection". I believe we should be able to add more information, namely if the

Page 2 of 4 ---- Generated from Forum

https://www.railml.org/forum/index.php

orientation is changed (changeDrivingDirection=true could also imply 2 CODs resulting in no
orientation change) as well as the precise number of CODs (optional). I also believe that the
"type" attribute should be an enumeration, that is, we have true/false for each of the proposed
types. (requiresShunting, changeDrivingDirection and crossesContraflowTraffic could each
independently be true or false.)

We add an object "travelPathInformation" (or maybe a better name? I don't want to use "route" as
this would be ambiguous) that refers to 3 netElements: A start X, an intermediary Y and an
endpoint Z. (Alternatively we could reference the netRelations linking X/Y and Y/Z in this order.) It
describes the internal path for a train coming from X and moving to Z, within the net element Y.
There can be more than one travelPathInformation for a sequence X-Y-Z if there is more than one
internal path a train could take.

The object has the following attributes (besides the usual attributes like ID, designators and such):
* directed: boolean (mandatory). If true, there might be another travelInformation element for the
route C-B-A. If false, the information here can be used for A-B-C as well as for C-B-A.
* distance: numeric. Travel distance for a train using this route (meters travelled on track which is
well defined).
* lengthRestriction: numeric. Maximum length of the train for this route (for any change of direction
we may have a length limit).
* changesOrientation: boolean. If true, we have a net change of orientation (last railcar coming
from A moving to B is now the first railcar on the way to C).
* numberOfDirectionChanges: int. Describes how often the train changes direction.
* requiresShunting: boolean. (Same as railML 2.5.)
* crossesContraflowTraffic: boolean. (Same as railML 2.5.)

Here is how this could look for the travelPathInformations within C (listing all objects starting with
A and ending in B, D or E):

<travelPathInformation netElement="neC" start="neA" destination="neB" directed="false"
distance="2000" lengthRestriction="200" changesOrientation="true"
numberOfDirectionChanges="1" requiresShunting="false" crossesContraFlowTraffic="false"/>
<travelPathInformation netElement="neC" start="neA" destination="neB" directed="false"
distance="2400" lengthRestriction="300" changesOrientation="true"
numberOfDirectionChanges="1" requiresShunting="true" crossesContraFlowTraffic="false"/>
<travelPathInformation netElement="neC" start="neA" destination="neE" directed="false"
distance="3000" lengthRestriction="200" changesOrientation="false"
numberOfDirectionChanges="0" requiresShunting="false" crossesContraFlowTraffic="false"/>
<travelPathInformation netElement="neC" start="neA" destination="neE" directed="false"
distance="3400" lengthRestriction="200" changesOrientation="false"
numberOfDirectionChanges="2" requiresShunting="true" crossesContraFlowTraffic="false"/>
<travelPathInformation netElement="neC" start="neA" destination="neD" directed="false"
distance="2500" lengthRestriction="200" changesOrientation="false"
numberOfDirectionChanges="0" requiresShunting="false" crossesContraFlowTraffic="false"/>
<travelPathInformation netElement="neC" start="neA" destination="neD" directed="false"
distance="2900" lengthRestriction="200" changesOrientation="false"
numberOfDirectionChanges="2" requiresShunting="true" crossesContraFlowTraffic="false"/>

Page 3 of 4 ---- Generated from Forum

https://www.railml.org/forum/index.php

(If we make this a child of netElement neC, then the netElement="neC" reference is not
necessary.)

Routing
=======
This was given as the main application for the railML 2.5 addition. Basically, we want to determine
the route(s) of a train journey where start and endpoint are known but there are several possible
routes. However, routing happens on many levels and might need further information. If we want
to plan train journeys (even in an early planning stage), I would expect that we need more
detailled information than just a "turning resistance" in the network model. And I'm not sure if the
infrastructure model is the right place to handle these informations.

As far as I'm concerned I wouldn't include "averageDelayTime" (from railML 2.5), because the
time may be highly dependent on other factors (like length and type of the train, if we have a
change of direction and the driver has to change cabins). Also "delay" assumes that there is some
basis to calculate the delay on, and it's not clear how this basis is defined.

If we want to allow some form of routing preference, I suggest to use a numeric attribute "weight",
or possibly an array of weights (weight/id combination), allowing to give a preference that would
be optimizer friendly. (In railML we have "priority", but that's an integer between 1 and 255 which
might be a problem for optimizers.) This allows to pass some data to an optimizer and use the
available paths within that net element in a routing algorithm. The precise meaning of the weight
would have to be described on a per-case bases.

This model allows us to migrate a railML 2.5 schema to 3.2, by using 2 weights instead of
"averageDelayTime" and "priority". This is how we could implement this:

<travelPathInformation netElement="neC" start="neA" destination="neB" directed="false"
distance="2000" lengthRestriction="200" changesOrientation="true"
numberOfDirectionChanges="1" requiresShunting="false" crossesContraFlowTraffic="false">
<weight id=" delayTime" value="1.5"/>
<weight id="priority" value="1"/>
</travelPathInformation>
<travelPathInformation netElement="neC" start="neA" destination="neB" directed="false"
distance="2400" lengthRestriction="300" changesOrientation="true"
numberOfDirectionChanges="1" requiresShunting="true" crossesContraFlowTraffic="false">
<weight id="delayTime" value="6.0"/>
<weight id=" priority" value="20"/>
</travelPathInformation>

Page 4 of 4 ---- Generated from Forum

https://www.railml.org/forum/index.php

