Using railML® for Exchanging Timetable Data
Experiences from the PAIP Project

Alexander Schmidt
Paris, May 3, 2017
Architecture Principles at SBB.

- Reuse, Rent, Buy or Make for new applications
- We share and use data across the entire SBB enterprise
- «Rent» or «Buy» is to be preferred in comparison to in-house/proprietary development
- Requirements on integration are increasing
Defined Goal of SBB Infrastructure’s IT.

- SBB IT aims at actively driving standardisation of its application integration.
- railML® / RailTopoModel is considered of having the potential – both from a business as well as from an IT perspective – to become an essential format for the standardised exchange of infrastructure data.
- In 2017 SBB Infrastructure’s IT is willing to demonstrate the potential and benefit of railML® / RailTopoModel, with the help of concrete projects and proof of concepts.

Jürg Balsiger, Head of IT Solution Center Infrastructure:

« In 2017 we want to detect the actual potential of railML® / RailTopoModel for SBB. »
Current Use of railML® (1/2).
Current Use of railML® (2/2).

- Rail Control System (RCS) is using railML® in order to archive production data.
- In NeTS (Net-wide Slot System) railML® is applied for the export of single slots with a minimum number of attributes being used by tracks.

With the Project PAIP a new interface is to be implemented using railML® 2.3 / 2.4.
Project «PAIP».

- **Process Alignment Interval Planning**
- Interval = restriction of capacity due to construction activities (suspension, speed restriction section)
- Support and improve planning process of closures in infrastructure
- Integration of a “commercial off-the-shelf” software in the field of capacity planning
- Data exchange between proprietary SBB applications and external (third-party) software
- Exchange of more than 200’000 slots per year
- Modernisation of the existing railML® 1.0-interface
Project «PAIP».

- railML® covers about 60-80% of our requirements
- Remaining coverage is ensured by proper extensions
- Major challenge consists the semantic significance of attributes
- Early contact with the railML® timetable community

Positive experience:
Extension can be proposed and incorporated in a relatively straightforward way. Assuming the approval of the railML® community the standard can be extended within few months.
Project «PAIP» – Next Steps.

- Pursue triggered changes of railML® 2.4
- Spring 2017: Start implementation of new interface
- Certification of the application NeTS
- Continuous participation in the timetable community – even after completion of the project
Outlook regarding railML®.

- Potential format for data exchange within SmartRail 4.0
- Potential for use within asset management with version 3 and consequently at the interface between asset and traffic management
- With RailTopoModel there is a increasingly valid conceptual fundament (driven by UIC)
- Currently, there is an IT study under way within SBB regarding a semi-automated maintenance of topology data for Viriato with RailTopoModel being a candidate for the underlying topological model
Consequences Regarding RailTopoModel.

- Consider and incorporate necessary extensions in the conceptual model (RTM) with the goal of accomplishing a homogenous time management in the areas of timetable and infrastructure → One (and only one) time dimension approach!

- Coordination and collaboration between RTM Expert Group and railML® timetable community needs to be intensified (mutual information about and review of current work).
Any questions?

Schweizerische
Bundesbahnen SBB

Alexander Schmidt
Chief Data Manager

Infrastructure
Assets and Technology
Hilfikerstrasse 3
CH-3000 Bern 65
+41 79 150 22 37
alexander.schmidt@sbb.ch
Steps towards implementing RailTopoModel in ADIF
In 2005 there was a change in the Spanish Railway industry: RENFE (1941) and GIF (1998) splitted into:

- **RENFE Operator**: Owner of trains and responsible for its circulation, working in competition with other railway companies.
- **ADIF**: Owner of the railway infrastructures (tracks, stations, freight terminals) and responsible for its maintenance, the traffic management, the allocation of the capacity of railway operators...
UNDERSTANDING IT SYSTEMS IN IM’S
UNDERSTANDING IT SYSTEMS IN IM´S
Railnet Europe – CIP Platform

TASKS:

- Analize the proposed model
- Mapping internal entities to the proposed model (equivalences)
- Develop the software to ensure the maintenance of the output.
- Mantain any changes in Schema Definition (both in source or destiny)
1 WHAT IS THE GOAL?
HOW IS OUR INTERNAL PROCESS?

Traffic Management → Common Segmentation ADIF → WEB IDEADIF → OGC SERVICES

Maintenance Systems Corporate Systems → WEB IDEADIF → SHAPEFILES

IDEADIF

SECTION OF LINES

NODES

KM POINTS (Dynamic Segmentation)
Generating the railML file (MACRO)
Publishing the railml file in http://ideadif.adif.es
Next steps in ADIF...

- Obtain the railml 3 certification.
- Publish railml file with infrastructure information of the network.
- Broaden the output file with more entities.
 - Covering meso and micro levels.
 - Not only infrastructure subschema.
- Support new UIC projects (RTM-BIM, RTM-GIS, RTM-SIM)
CONCLUSIONS...
STRATEGY AND TRANSFORMATION
Event:
Topic: RTM
Implementation: An IT solution provider’s perspective
Date: 19 April 2016
Introduction

GiSmartware:
- French company
- 25 year old, 40 employees
- Software editor

Netgeo platform:
- SOA
- GIS for territorial network managers:
 - Telecom
 - Water
 - Sanitation
 - Power distribution
 - Railway

Netgeo platform:
- Map
- UI
- Schematics
- Application server
 - Auth.
 - Data access
 - Processing
- Persistance
 - Oracle
 - SQL Server
 - PostgreSQL
Netgeo Rail
Built on solid basis

- **RTM: foundation**
 - Strong topological model
 - Standardised by the UIC
 - Well-documented

- **SNCF Réseau: experience**
 - Deep industrial knowledge
 - RTM-compatible Ariane model
 - SOA Repository Gaia

- **GiSmartware: architecture**
 - 25-year experience in software development
 - Robust Netgeo platform
 - Industrialisation know-how
Advantages of RailTopoModel
1/3 – An industrial standard

- **Securing GiSmartware’s investment in Netgeo Rail:**
 - A software designed with the business knowledge of SNCF Réseau, built to fit new customers
 - Netgeo Rail is compatible with any RTM-compliant model

- **Securing IM’s investment in information systems:**
 - RTM reduces the cost of entry for software vendors
 - RTM roadmap secures evolutions
 - This means more choice and better software for IM
Advantages of RailTopoModel

2/3 – An object model

- **Object model:**
 - Sound basis for any software
 - Easy to extend to cater to end-customer’s specificities
 - Guarantee for data quality
Advantages of RailTopoModel

3/3 – Well documented

- A UML model, as an XMI file:
 - Enables efficient tooling (code or UI generation)
 - Guarantees data well-formedness, throughout the system

- An unambiguous serialisation (RailML, for data exchange)
RailTopoModel
Our wishlist

➤ A UML model, as an XMI file?
 ▪ IRS 30100 available as a PDF file, the XMI file is not so readily accessible
 ▪ XMI enables powerful tooling:
 ✓ No place for such tools to be shared (a UIC github account?)
 ✓ Software vendors are ready

➤ Leveraging the knowledge of the community:
 ▪ The RailTopoModel forum is underused:
 Used more for troubleshooting than sharing best practices
Netgeo Rail

Cartographic view: macro or micro level
Netgeo Rail
Description of all your infrastructure
Netgeo Rail

Routes

Event: UIC RTM Conference
Topic: RTM: An IT solution provider’s perspective
Date: 09/05/2017
Netgeo Rail
Do you want to know more?

- Fabrice Simonin
 - GiSmartware R&D manager
 - Netgeo Rail product manager

Contact me:
- fsimonin@gismartware.com
RailTopoModel for route protection and simulation

Exploration work, 4th of may 2017
Why we use RailTopoModel

• Apply “model-driven” methodologies for railway domain
 - Infrastructure
 - Signalling
 - Ertms

• Use of computerized tools
 - Simulation
 - Formal methods
Early Works

1. Focus on modelling of railway infrastructure
 - Infrastructure
 - Route
2. To perform analysis
 - Route calculation
 - Train/route protection
3. Using a prototype RTM implementation
Modelling with RailTopoModel

• How to model Infrastructure?
 - Low level modelling
 - Rules to navigate object smoothly

• How to represent RailTopoModel model?
 - Schematic
 - Graph view
Modelling with RailTopoModel

• How to model Infrastructure to be usable with analysis tools?
 – Level of details / Scaling
 – Navigability
Analysis based on RailTopoModel Model

• Use route model to get
 - Points to control
 - Balises messages to set
RTM implementation prototype

- Based on Python and SQLALchemy
 - Python code easy to extend
 - SQL DB is standard for data hosting
 - PyRTM module to import
 - Still Prototype!
Working On

3. Link to ERSA ERTMS simulator
 - Link ERTMS object to RTM
 - Perform analysis on ERTMS infrastructure

4. Linked with Formal methods tools
 - B method for control command
 - Petri Net model for analysis
Thanks you for your attention!

simon.collart-dutilleul@ifsttar.fr, matthieu.perin@ifsttar.fr
samir.assaf@railenium.eu