
Subject: Extensible RailML
Posted by Heidrun Jost on Tue, 06 Mar 2007 08:00:17 GMT
View Forum Message <> Reply to Message

Hello,
for usage of RailML in the RBC project there are a lot of
extensions necessary. I think, this is a general problem
for each usage, to place the customer specific extensions
in RailML.
The approach of RailML is not an extensible XML, but a rigid
amount of defined elements and attributes.
Customer specific extensions are only possible by a request
at the forum (for common interesting items) or by usage
of "GeneralElements".
The usage of "GeneralElements" has important disadvantages:
Independent of the usage of "GeneralElements" in one file
together with the other RailML elements or in an separate
file, the XML file containing the "GeneralElements" is not
RailML compliant.
Another disadvantage is the definition of additional identifiers
to establish a relationship between an element and additional
attributes.
For check tools a lot of consistency checks are required.
It is difficult to realize the relationship between the RailML
file and the additional information.

I think a better solution is the definition of an extensible
RailML using wildcards.
The W3C XML schema provides place holders xs:any and
xs:anyAttributes. Elements and attributes out of a given
namespace can be used by usage of these place holders
The owner of the schema can control the occurences of
the place holders.
By usage of processContents attribute it is possible to define
the kind of check of the XML content concerning to the
place holders (skip - no check, lax - lax check, scrict - strictly
validation check).

The following example shows the usage of the any and anyAttribute.

At first a RailML schema with the definition of signalGroup and
signal withe the attributes "name" and "stationID". In addition
an anyAttribute definition for customer attributes and any
definition for customer elements.

File railMl.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Page 1 of 3 ---- Generated from Forum

https://www.railml.org/forum/index.php?t=usrinfo&id=37
https://www.railml.org/forum/index.php?t=rview&th=85&goto=186#msg_186
https://www.railml.org/forum/index.php?t=post&reply_to=186
https://www.railml.org/forum/index.php

elementFormDefault="qualified">
<xs:element name="signalGroup">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="signal" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="stationID" type="xs:string"/>
 <xs:any minOccurs="0" processContents="strict"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="strict"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The second schema file defines the customer attribute
"custAttr" and customer element "custElement".

File cust.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.thalesgroup.com"
elementFormDefault="qualified">
<xs:element name="custElement">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="custElementName" type="xs:string"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:attribute name="custAttr">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="si1|si2"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
</xs:schema>

The follwing xml file contains a signal with a combination
of the defined elements and attributes of the two schema
files above. The file will be checked against the two schema

Page 2 of 3 ---- Generated from Forum

https://www.railml.org/forum/index.php

files. The additional customer attributes and elements are
marked by the defined namespace "cust".
railMl.xml:

<?xml version="1.0" encoding="UTF-8"?>
<signalGroup
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cust="http://www.thalesgroup.com"
xsi:noNamespaceSchemaLocation="railML.xsd"
xsi:schemaLocation="http://www.thalesgroup.com cust.xsd">
<signal cust:custAttr="si1">
<name>signal1</name>
<stationID>stationID1</stationID>
<cust:custElement>
 <cust:custElementName>ExitInfo</cust:custElementName>
</cust:custElement>
</signal>
<signal>
<name>signal2</name>
<stationID>stationID2</stationID>
</signal>
</signalGroup>

This is a way to check the RailML definitions only
and to ignore the unknown customer definitions.
The customer definitions will be checked by another schema.
All files with customer extensions are RailML compliant.

This is also a way to "clean up" the current schema
definition from special customer items (if existent)
and to restrict the definitions to topology aspects only.

Best regards,
Heidrun Jost

Page 3 of 3 ---- Generated from Forum

https://www.railml.org/forum/index.php

